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Disclaimer

The findings and conclusions in this presentation are those
of the authors and should not be construed to represent any
official USDA, or U.S. Government determination or policy.
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Background and goals

I NASS produces monthly crop yield forecasts

I Official forecasts are consensus estimates of the Agricultural
Statistics Board (ASB)

I Recent research in support of the forecasting program

I Bayesian hierarchical models

I Combine data from multiple surveys and covariates

Goal: Which observable covariates are most relevant? Special
focus on monthly upland cotton yield forecasting.
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Speculative region for upland cotton (2008-2018)
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Sources of data

I Objective Yield Survey (OYS): monthly field measurements at
sampled plots (Sep.-Jan.; Aug.-Jan. prior to 2019)

I Speculative region

I Agricultural Yield Survey (AYS): interview conducted monthly

I December Crops Acreage, Production, and Stocks Survey
(APS): interview conducted post-harvest, large sample sizes

I Cotton Ginnings (CG): projected production data from cotton
ginning operations
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Bayesian hierarchical model for the Speculative region
(Benecha & Cruze (2018), Adrian (2012), Wang et.al (2012))

Notation
I µt–true yield

I yktm–observed yield

I k ∈ {O,A,Q,G}–survey index

I t ∈ {1, ...,T}–year index

I m ∈ {8, 9, 10, 11, 12, 13}
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Existing model Covariates
Covariates for the j th state

µtj ∼ N
(
x
′
tjβj , σ

2
η

)
Current model for upland cotton includes:

I cdd 7: Average July cooling degree days (NOAA)
I pcp 7: Average July precipitation (NOAA)
I condGE 30: Crop condition rating % rated excellent + good

(NASS); Week 30
I drght 7: July drought severity index (University of Nebraska,

Lincoln)

I For the Speculative Region: covariate values are defined as
weighted averages of state-level covariate values

I Covariates selection - based on exploratory analysis and
knowledge about the growth/development processes of the
crop
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Pool of potential covariates
Weather, normalized difference vegetation index (NDVI) and crop
condition ratings data available
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Covariate selection: Exploratory analysis, dimension reduction

I Initial exploratory analysis
I Reduce the number of variables by clustering similar columns

together
I Hierarchical clustering
I Binary and divisive algorithm (SAS/STAT User’s Guide 14.1,

pages 9787-9817)

I Choose the best variable from each cluster

I Knowledge about the crop to include/exclude variables from
the final list

I tmp(average temperature), pcp(average precipitation),
zndx(Palmer Z index), pmdi(Modified Palmer drought index),
exc(Crop condition: Excellent), condGE(Crop condition:
Good+ Excellent), drght(Drought) and ndvgl(Normalized
difference vegetation index)

JSM 2019–Model-Based Crop Yield Forecasting: Covariate Selection and Related Issues



10/18

Covariate selection: Spike-and-slab priors

Kou & Mallick (1998); George & McCulloch (1993)

I Insert spike-and-slab priors in the Bayesian model

Corresponding to covariate j , specify

βj ∼ γj × Normal(0, τ) (4)

γj ∼ Bernoulli(p)

p ∼ Uniform(0, 1)

τ ∼ Gamma(0.001, 0.001)

I Simulation studies

I Covariates selected {condGE 30, ndvgl 7 }
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Comparison of predictive performances
I Speculative Region: Sums of absolute relative differences of

model estimates from May yield (abs.rel .difm)

abs.rel .difm =
T∑

t=S

|YieldForscasttm −MayYieldt |
MayYieldt

m = Aug., Sep., Oct., Nov., Dec., Jan,

T = 2018, S = 2001 & S = 2014

Sums of absolute relative differences of model estimates from May yield

Model August September

Leave-one-out CV 2001-2018
Selected covariates 1.374 1.110
Existing covariates 1.489 1.154

Forecasts for years 2014-2018
Selected covariates 0.244 0.215
Existing covariates 0.281 0.219
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Covariate selection: considering additional covariate sets

I Best set of covariates from variable selection may not be best
for forecasting

I Consider several additional sets of covariates

I A total of 71 sets of covariates
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Comparison of predictive performances
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Forecasts from {condGE 30,drght 7,ndvgl 7}

14/18



Forecasts from existing model: {condGE 30,cdd 7,pcp 7, drght 7 }
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Discussion

I Exploratory analysis, cluster analysis, spike-and-slab priors

I NASS crop condition ratings and NDVI are important
predictors

I The influence of covariates on yield forecasts decreases from
August to January

I Covariates have little impact during the last forecasting
months

I August/September forecasts may sometimes be much higher
than the final May yield
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Thank You!

Contact:

habtamu.benecha@usda.gov
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